Predicting Insect Migration Density and Speed in the Daytime Convective Boundary Layer
نویسندگان
چکیده
Insect migration needs to be quantified if spatial and temporal patterns in populations are to be resolved. Yet so little ecology is understood above the flight boundary layer (i.e. >10 m) where in north-west Europe an estimated 3 billion insects km(-1) month(-1) comprising pests, beneficial insects and other species that contribute to biodiversity use the atmosphere to migrate. Consequently, we elucidate meteorological mechanisms principally related to wind speed and temperature that drive variation in daytime aerial density and insect displacements speeds with increasing altitude (150-1200 m above ground level). We derived average aerial densities and displacement speeds of 1.7 million insects in the daytime convective atmospheric boundary layer using vertical-looking entomological radars. We first studied patterns of insect aerial densities and displacements speeds over a decade and linked these with average temperatures and wind velocities from a numerical weather prediction model. Generalized linear mixed models showed that average insect densities decline with increasing wind speed and increase with increasing temperatures and that the relationship between displacement speed and density was negative. We then sought to derive how general these patterns were over space using a paired site approach in which the relationship between sites was examined using simple linear regression. Both average speeds and densities were predicted remotely from a site over 100 km away, although insect densities were much noisier due to local 'spiking'. By late morning and afternoon when insects are migrating in a well-developed convective atmosphere at high altitude, they become much more difficult to predict remotely than during the early morning and at lower altitudes. Overall, our findings suggest that predicting migrating insects at altitude at distances of ≈ 100 km is promising, but additional radars are needed to parameterise spatial covariance.
منابع مشابه
Numerical Simulation of MHD Boundary Layer Stagnation Flow of Nanofluid over a Stretching Sheet with Slip and Convective Boundary Conditions
An investigation is carried out on MHD stagnation point flow of water-based nanofluids in which the heat and mass transfer includes the effects of slip and convective boundary conditions. Employing the similarity variables, the governing partial differential equations including continuity, momentum, energy, and concentration have been reduced to ordinary ones and solved by using...
متن کاملThree-Dimensional Boundary Layer Flow and Heat Transfer of a Dusty Fluid Towards a Stretching Sheet with Convective Boundary Conditions
The steady three-dimensional boundary layer flow and heat transfer of a dusty fluid towards a stretching sheet with convective boundary conditions is investigated by using similarity solution approach. The free stream along z-direction impinges on the stretching sheet to produce a flow with different velocity components. The governing equations are reduced into ordinary differential equations b...
متن کاملبررسی تغییرات ارتفاع و ضخامت لایه مرزی در شرایط گردوغباری شهر اهواز
One of the most important components of the extent of pollutants mixing and air quality at near the Earth's surface is the height of boundary layer. Many variables involved in determining the height of the boundary layer of atmosphere. Although all of the troposphere (the lower ~10km of the atmosphere) is affected by surface conditions, most of it has a relatively slow response time. The lower ...
متن کاملUrban Fluid Dynamics – Thermally Driven Environmental Flows Entrainment Dynamics of Shear-Free Convective Boundary Layers Growing in Linearly and Discretely Stratified Fluids
Boundary layers driven by surface buoyant forcings are commonly observed in the environmental flows. An atmospheric example of such boundary layer is the so-called convective boundary layer (CBL), which is driven by buoyancy production at the heated underlying surface during the daytime conditions. The buoyancy is defined as b= g − ( ρ -ρ0 )/ρ0 , where ρ is the density of the fluid, ρ0 is the r...
متن کاملSimulation of entrainment near a density stratified layer: Laboratory experiment and LIDAR observation
In this paper a simple qualitative model of the growth of a mixed layer adjacent to a uniform layer with a stably stratified layer is presented. The depth variations of mixed layer can be estimated from direct measurements. The Entrainment of a stably stratified layer into a turbulent mixed layer in a confined region was studied in laboratory for different Richardson numbers. The internal waves...
متن کامل